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ABSTRACT

We present a new method for protein structure comparison that combines indexing and
dynamic programming (DP). The method is based on simple geometric features of triplets
of secondary structures of proteins. These features provide indexes to a hash table that
allows fast retrieval of similarity information for a query protein. After the query protein
is matched with all proteins in the hash table producing a list of putative similarities, the
dynamic programming algorithm is used to align the query protein with each protein of
this list. Since the pairwise comparison with DP is applied only to a small subset of proteins
and, furthermore, DP reuses information that is already computed and stored in the hash
table, the approach is very fast even when searching the entire PDB. We have done extensive
experimentation showing that our approach achieves results of quality comparable to that
of other existing approaches but is generally faster.
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1. INTRODUCTION

The enormous growth of experimentally determined three-dimensional structures of proteins, either
by X-ray diffraction or NMR techniques (PDB) poses the problem of the structural comparison of

distantly related proteins. It is well known that similar three-dimensional folding can be present in proteins
that bear small or even undetectable amino acid sequence homology. Three-dimensional (3D) similarity can
be useful, for instance, in structural proteomics projects, where the discovery of a new fold is often coupled
to the search for a function: structural similarity can help to assign a function to a newly determined protein
structure. Several servers that perform an automatic search for structural homology are already available.
Among them are DALI, CE, SSAP, and VAST. They are based on different algorithms and often produce
slightly different results. In a recent paper by Novotny et al. (2004), a comparative evaluation of all the
11 servers publicly available was used to assess their performance, in particular in terms of ability in
recognizing established similarities. The conclusion was that, despite the fact that some servers behave
better than others, none of them can be considered fully reliable; i.e., none of them gives a 100% success
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rate. As a consequence, the authors conclude that more than one server should be used before the novelty
of a fold is established.

In this paper, we present an approach to protein structure comparison that combines indexing and
dynamic programming. Recently, we proposed “indexing techniques” for comparing three-dimensional
structures of proteins (Ferrari et al., 2003; and Guerra et al., 2002). The method is based on the use of
simple geometric features of secondary structures of proteins. Briefly, the entire protein is reduced to linear
segments, each of them representing a secondary structure element (SSE). All possible triplets of such
elements are considered and their geometric properties (angles and distances) are computed and then used
to build a hash table. For a given set of proteins, each entry of the table contains all triplets characterized
by similar dihedral angles. Once the table is built, it can be easily used to perform different kinds of
internal comparisons or statistical analysis (Platt et al., 2003) or for matching a query protein against the
database. Given a query protein, one can retrieve from the index-based table a list of similar proteins
ranked according to a given similarity criterion. This step is very fast since it does not examine each stored
protein separately but only considers through indexing the entries of the database corresponding to similar
substructures. However, since false positive results may be found at this stage, a more detailed and refined
analysis is needed to improve the quality of the results.

In this paper, we describe a new dynamic programming (DP) algorithm for pairwise structure alignment
and show how to integrate indexing and dynamic programming to achieve robust and reliable comparison
in an efficient way. In the integrated approach, after the query protein is matched with all proteins in the
index-based table producing a list of putative similarities, DP is used to determine an alignment according
to protein sequence order of the SSE of the query protein with each protein of this list. DP is based on
a score function derived from the same geometric properties computed and used by indexing. After this
step, all proteins of the list are reranked according to the more stringent similarity criterion used by DP
thus obtaining a new and final list of proteins similar to the query protein. As an additional result, from
the aligned SSE, a superposition at the atomic level of the query protein with any selected protein from
the list can be obtained. Since the pairwise comparison with DP is applied only to a subset of proteins
whose size is much smaller than the original set and, furthermore, DP reuses information that is already
computed and stored, the computational complexity of the overall method can be kept within reasonable
bounds, even when searching the entire PDB.

Based on these principles, we have built a server for protein structure comparison called PROuST
(PROtein STructure comparison) (a preliminary version is available at www.angela.dei.unipd.it/PROuST).
It contains the geometric database of the entire Protein Data Bank, and its characteristics are described
here. More precisely, the overall method is presented in Section 3, where Subsection 3.1 reviews the table
construction and search, and Subsection 3.2 introduces the dynamic programming approach, based on the
geometric features computed and stored by indexing. Previous work on protein structure comparison is
briefly reviewed in Section 2, concentrating on existing indexing and DP approaches. Experimental results
are presented in Section 4, which also contains a discussion on the performance of the method and its
comparison with other existing methods.

2. PREVIOUS WORK

A large number of approaches to structural alignment and comparison have been proposed and developed
to date (e.g., Abagyan and Maiorov, 1989; Brown et al., 1996; Lancia et al., 2001; Grindley et al., 1993;
Gibrat et al., 1996; Shindyalov and Bourne, 1998; Overington et al., 1993). Some of the methods are based
on comparing the distance matrices of each structure with the objective of minimizing the difference in
intraatomic distances of the aligned structural elements (Holm and Sander, 1996, 1996b). Other methods
try to minimize the interatomic distances of two structures (Sali and Blundell, 1990; Taylor and Orengo,
1989). In this section, we focus on methods based on dynamic programming and on indexing techniques,
since our own approach is a combination of these two. Surveys on the general structure comparison problem
are found in Bourne and Weisseig (2003), Ferrari and Guerra (2003), and Lemmen and Lengauer (2000).

Indexing techniques, initially proposed to solve the model-based object recognition problem in the area of
computer vision (Lamdan et al., 1990), have been applied to compare protein structures at the atomic level
(Fischer et al., 1995) or at the level of secondary structures (Alesker et al., 1996; Holm and Sander, 1995).
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Indexing methods mainly consist of choosing a suitable 3D representation of the structures in terms of
features that can be conveniently used to access and search a table or database of 3D structures. Fischer
et al. (1995) use as features the affine coordinates in a reference frame formed by quadruples of points
(the Cα atoms). These features generate numbers from which indexes to specific locations of the table
are derived. Once constructed, the table is used as look-up table to retrieve hypotheses of similarity for
a query protein. This approach allows fast retrieval even for large databases since the search for a query
protein is not performed on a pairwise basis with all the proteins in the database.

Dynamic programming has been used for protein structural alignment, applied either at the level of
secondary structures or at the atomic level. Often the DP algorithm has been applied iteratively: the results
of one iteration of the DP are used to set new values of the scoring function until convergence (Taylor, 1999;
Akutsu, 1996). In STRUCTAL (Gerstein and Levitt, 1998), the alignment between two protein backbones
is obtained by iteratively applying DP to minimize the RMSD between the aligned atoms. Initially, the
DP matrix is filled with the pairwise interatomic distances between all atoms from the two structures.
Following each iteration of DP, the obtained correspondences are used to derive a rigid transformation that
maps one protein into the other: new pairwise distances are computed after this transformation.

In LOCK (Singh and Brutlag, 1997), a combination of secondary structures alignment and atomic
superposition is used to minimize the RMSD between atoms. The DP is iteratively applied to derive
an alignment of secondary structures. Initially, the scores between vectors are orientation independent;
following each DP iteration, the new results are used to derive orientation-dependent scores for pairs of
secondary structures. Every subsequent successive DP iteration involves orientation-independent as well
as the newly computed orientation-dependent scores.

3. METHODS

Our approach to protein structure comparison uses a combination of techniques that allow fast retrieval of
similarity information from a database containing all the protein structures present in the PDB. The steps of
the methods are shown in the workflow of Fig. 1. For a query protein, the first step is to search the hash table
using the same features that are used for the table construction. The search returns hypotheses of similarity
with the query protein as a list of candidate proteins. Then, in the next step, dynamic programming is used

FIG. 1. PROuST workflow: the tasks for structural comparison of proteins.
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for pairwise structure alignment between the query protein and the proteins of this list. DP also returns a
similarity score according to which the proteins of the list are rearranged and sorted to produce the final
list of similar proteins. From the aligned SSE, it is also possible to obtain a superposition at the atomic
level of the query protein with any protein selected from the list. In the following, we describe in detail
each step of this workflow.

First, we design an index structure based on geometric features of triplets of secondary structures; the
same features are the basis for the fast search in the database as well as for the pairwise comparison that
we will be described in Section 3.2. Secondary structures are represented by the best-fit line segments. A
singular-value decomposition (SVD) routine is used to associate a segment to each α-helix and strand of
a β-sheet (Gerstein, 1992). The angles and distances of triplets of segments are used to store the protein
structures and retrieve similarity information.

Let P be a protein and (p1, . . . , pn) the best-fit line segments associated to its n SSE, listed according
to their order along the backbone. Consider a triplet (pu, pv, pz) of segments with u < v < z; let
( αuv, αvz, αuz) be the dihedral angles formed by the segments of the triplet. Furthermore, ( duv, dvz, diuz)

are the distances between the three pairs of segments of the triplet (the distance between two segments is
defined as the distance between their midpoints).

The angle values of the triplets of segments, after proper quantization, define the index structure for the
database that stores the proteins. The search procedure accesses the database looking for triplets of SSE
of stored proteins that are equivalent to triplets of the query protein. Two triplets are considered equivalent
if they have similar angle and distance values. More precisely, consider a triplet (qr , qs, qt ), r < s < t , of
secondary structures segments of another protein Q with the angles φrs, φst , φrt and distances hrs, hst , hrt .

Definition. The two triplets (pu, pv, pz) and (qr , qs, qt ) are equivalent if

|αuv − φrs | < TA, |αvz − φst | < TA and |αuz − φrt | < TA

and

|duv − hrs | < TD, |dvz − hst | < TD and |duz − hrt | < TD

with TA and TD given thresholds.

The threshold values were experimentally determined and set as follows: TA = 18◦ and TD = 8 Å. We
tried several threshold values for TA in the range 5–20◦ and for TD in the range 5–15 Å and the chosen
ones seem to be a good compromise between selectivity and sensitivity.

In the following, we describe the index-based method that allows us to determine equivalent triplets
efficiently. The method first builds a hash table containing all proteins indexed by the angles of triplets of
segments; then, given a query protein, it performs a search in the table for equivalent triplets and uses a
voting process to select a list of similar proteins.

3.1. Building the database by indexing

We build a four-dimensional table with the following index structure: for a given triplet of segments, to
access the appropriate entry of the table, three indexes are given by the quantized values of the angles of
the triplet; the fourth index depends on the composition of the triplet in terms of the number and position
of helices and strands. This index, called triplet type, is introduced to resolve the ambiguity of comparing
a segment representing a helix with one representing a strand. The size of the cells of the table used to
quantize the angle values is related to the threshold TA and, in our approach, it is set equal to 18◦. Each
cell of the table contains a list of records, one for every triplet that hashed into it. The following procedure
inserts protein P into the database and is a variant of the one described by Guerra et al. (2002).

PROCEDURE: Protein insertion
All triplets of secondary structures of P are examined, and for each triplet (pu, pv, pz) with u < v < z

the following steps are executed:
i. Compute the angles (αuv, αvz, αuz) and determine triplet type
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ii. Access the cell of the table at the location indexed by triplet type and by the quantized values of
(αuv, αvz, αuz)

iii. Append to the list of records at that cell a new record that contains:
• the name of Protein P
• the identifier of each secondary structure element of the triplet
• the distances ( duv, dvz, duz) between every pair of segments in the triplet.

The above procedure is repeated for all proteins in the dataset. The construction of the table is the
most computationally intensive part of the overall procedure. With the current size of the PDB (more than
23,000 structures), the storage requirement for the hash table is more than 5 Gbytes. For the insertion of a
protein with n secondary structures, O(n3) triplets have to be stored into the table each involving access
to secondary memory. We have described elsewhere (Ferrari et al., 2003) a distributed implementation
of the table construction that partitions the table across the nodes of a computational GRID (Foster and
Kesselman, 1998) and achieves a good load balancing while reducing accesses to secondary storage.

3.1.1. Retrieving similarity from the table. Once the table has been built, one can retrieve similarity
information for a query protein Q very efficiently. A detailed description of this phase is given by (Ferrari
et al. (2003). Briefly, the procedure computes, for every triplet of secondary structures segments of Q, the
three angles and distances between segments, then accesses the cell indexed by three angles and casts a
vote to the records in the cell with similar distance values. For simplicity, in the voting process, each triplet
of Q may only cast one vote to a given target protein T , and conversely, a triplet of T only contributes
a vote to Q, even if it is equivalent to several triplets of Q. Because of the quantization of the angular
values, the equivalent stored triplets may not lie in exactly the same hash cell as the query triplet, but
in one of the neighboring cells. That is why our method examines also the adjacent cells in the search
process.

Hypotheses of matches of the query protein with the stored proteins are ranked according to the number
of votes they accumulate. Since false positive matches may arise, a verification phase is needed. However,
in practice, simply counting the number of votes provides a reasonable matching score. The approach we
have presented provides a good basis for further analysis. The hypotheses of similarity can be verified by
a pairwise comparison between the proteins, as described in the next section.

3.2. Pairwise alignment using secondary structures

In this section, we describe a new method to align secondary structure elements, using the information
computed and stored by the indexing method, thus integrating our two main approaches.

The alignment problem seeks associations between pairs of secondary structures of two given proteins P

and Q. It can be formally described as follows. Let (p1, . . . , pn) be the n segments associated to secondary
structures of P and (q1, . . . , qm) the m segments of Q. The structural alignment procedure determines an
ordered set of pairs (i, j) associating secondary structure pi of P to qj of Q. The alignment satisfies the
continuity constraints, i.e., if (i, j) and (h, k) are two aligned pairs and i < h, then j < k; furthermore,
it allows gaps that correspond to nonsequential i values in consecutive pairs. The entry M(i, j) of a two-
dimensional score matrix stores the score of the pair of segments pi of P and qj of Q and is defined as
follows.

Two equivalent triplets (pi1, pi2, pi3) of P and (qj1, qj2, qj3) of Q determine three candidate pairs
of corresponding segments: (pi1, qj1), (pi2, qj2), and (pi3, qj3). The score M(i, j) of the pair (pi, qj )

is given by the number of times the pair (pi, qj ) occurs in any two equivalent triplets of segments of
secondary structures of P and Q. It is important to stress the fact that the similarity score is derived from
the data stored in the hash table, since this is crucial to the performance of the method. In the following, we
describe how to compute the matrix M from the information stored in the hash table by using a procedure
similar to the search described in the previous section. We assume that protein Q has been already inserted
into the hash table.

PROCEDURE. Compute the score matrix M(i, j)

Step 1.
Initialize M(i, j) to 0 for i = 1, . . . n, j = 1, . . . m.
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Step 2.
All triplets of secondary structures of P are examined and for each such triplet (pu, pv, pz) with u < v < z

the following steps are executed:
i. Compute the three angles (αuv, αvz, αuz) and the three distances (duv, dvz, duz). Access the hash table

at the cell indexed by the three quantized angles and by the determined triplet type.
ii. Examine all triplets of Q, if any, in that cell. Let (qr , qs, qt ) be one such triplet, r < s < t .

if the distances of the two triplets are within the threshold TD, i.e.,
|duv − hrs | < TD, |dvz − hst | < TD and |duz − hrt | < TD
then
{ M(u, r) = M(u, r) + 1; M(v, s) = M(v, s) + 1; M(z, t) = M(z, t) + 1; }

iii. Examine all triplets of Q, if any, in the neighboring cells of the cell considered at step ii. Let (qr , qs, qt )

be one such triplet, r < s < t .
if the distances and the angles of the two triplets are within the thresholds , i.e.,

|duv − hrs | < TD, |dvz − hst | < TD and |duz − hrt | < TD and
|αuv − φrs | < TA, |αvz − φst | < TA and |αuz − φrt | < TA
then
{ M(u, r) = M(u, r) + 1; M(v, s) = M(v, s) + 1; M(z, t) = M(z, t) + 1; }

End.

The neighboring cells are the ones with indexes differing by at most +1 or −1.

3.2.1. The dynamic programming algorithm. Given a pairwise scoring matrix M with M(i, j) indicat-
ing the similarity score of the pair (pi, qj ), the alignment procedure optimizes the following function: the
sum over all secondary structures associations of the above score. The general recurrence used by DP is

D(i, j) = max{D(i − 1, j − 1) + M(i, j), D[i][j − 1] − gp, D[i − 1][j ] − gp}
where D(i, j) is initially set to 0. The parameter gp indicates the gap penalty and is set to 0 in our
procedure since we want to allow missing helices and strands. As is well known, even for very high
structural similarity, often a helix appears split into two helices in one of the proteins. The dynamic
programming algorithm determines an optimal nondecreasing path in the matrix D. The total weight of
the optimal path is stored in D(n, m). The entire D matrix is kept in memory along with back pointers
to be able to reconstruct at the end the optimal path and its length, i.e., the number of aligned secondary
structures.

The DP is repeatedly applied to all proteins from the list produced by the index-based search for a given
query protein. The proteins of such list are now reranked by a new similarity measure derived from the
values D(n, m) computed by DP. To account for differences in protein size and penalize the occurrences
of a small substructure in large proteins, we introduce the following similarity score:

Score = D(n, m)(SSal/SStot )
2

where SSal is the number of aligned SSE and SStot is the total number of SSE of protein Q.
In summary, DP produces a list of similar proteins by taking into consideration both the continuity

constraint and the triplet equivalences, thus overcoming the drawbacks of indexing. We recall that in the
indexing method it can happen that two pairs of equivalent triplets contribute to a result even if together
they do not satisfy the continuity constraint.

Before concluding this section, we want to point out that we have investigated graph-based algorithms
to align secondary structures using the features contained in the hash tables. These algorithms tend to be
computationally more demanding than DP; on the other hand, the added complexity does not seem to be
justified since the results obtained by DP are already quite satisfactory, as we will show later.

3.3. Protein atomic superposition

The final stage of the proposed scenario for protein structure comparison is the superposition of the two
molecules, that is, the determination of the rigid transformation that “best” overlaps the two proteins.
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In the superposition step, we consider a protein representation that includes the coordinates of the Cα

atoms. This allows us to formulate the goodness of the overlap in a more common way and to assess the
performance of our method in comparison with other approaches. Most of the existing approaches measure
the quality of their results considering the number of aligned atoms and the root mean square deviation
(RMSD) between them.

Given a set of pairs of points in 3D space, finding the roto-translation that minimizes the RMSD is a
well known optimization problem. Among the many solutions that can be applied, we have chosen Horn’s
algorithm, which provides a closed form solution (Horn, 1987). Horn’s algorithm computes, in a time
proportional to the number of pairs, the 4 × 4 transformation matrix that minimizes the RMSD between
the input points.

As seen in the previous section, the result of DP is a set of associations between secondary structures.
We use these associations as the starting point in developing a superposition algorithm. In other words,
we find pairs of atoms that are constrained by the secondary structures associations produced by DP.

In the following, we describe how to select pairs of corresponding points of the aligned structures as
input to Horn’s procedure. The steps of the superposition procedure are the following:

1. Compute an initial rigid transformation based on the starting and ending residues of all aligned secondary
structures.

2. After applying the obtained transformation to one of the proteins, for each pair of aligned secondary
structures, find pairs of nearest atoms.

3. Use the pairs of nearest atoms computed in step 2 to derive a new transformation that minimizes the
RMSD.

4. Repeat steps 2 and 3 until RMSD converges.

Step 1 produces typically a good starting point for the rigid transformation. Often, however, the number
of atoms involved in this step is very small, and the transformation needs to be refined. To this end, from
the obtained transformation, we extract pairs of atoms that are potentially homologous, by determining
for each atom of a secondary structure of the first protein the closest atom in the associated secondary
structure of second protein. From these pairs of points, we compute a new transformation by minimizing
the RMSD. The algorithm repeats these two steps until RMSD converges and hopefully the number of
atoms increases.

Finally, we try to extend the obtained transformation and alignment to the atoms outside the aligned
secondary structures, while maintaining the continuity constraint. More precisely, we examine all atoms
belonging to loop regions in between corresponding secondary structures to check whether they can be
transformed into each other within a given distance threshold value. By doing so, typically a considerable
fraction of atoms is added to the output.

4. RESULTS

As already mentioned, the index-based comparison procedure produces a rough list of hypotheses of
similarities of the target model with the complete database, and the fine alignment by DP is next performed
on each pair of the polypeptide chains from the list. The result of a query consists of a list of matching
proteins in decreasing order of score. The initial part of the output for a test case is reported in Table 1
sorted according to the Score generated by the DP algorithm. Like in other fold comparison servers, an
absolute cut-off value is not assigned in order to decide what can be considered similar and what is not.
At present, the web-server allows one to display a maximum of 9,999 output chains, which represents a
consistent proportion of the total entries of the Protein Data Bank and, in any case, quite a large number
to be examined manually.

To assess the performance of our approach, we conducted a first set of experiments using the SCOP
classification (Murzin et al., 1995) as standard-of-truth. The goal was to determine whether, for a given
model or query protein, our server would retrieve proteins from the same fold, according to SCOP, as the
query protein. Three representative proteins present in the PDB, belonging to well-known protein families,
were used for the test. The selected proteins were i) triose phosphate isomerase, chain A (1tim), an α/β
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Table 1. An Example of Output for Protein 101ma

Rank Protein SSal Score Name NA RMSD(Å)

1 1abs . 8 172 OXYGEN STORAGE 154 0.3
2 2mgf . 8 170 OXYGEN STORAGE 154 0.4
3 2mga . 8 170 OXYGEN STORAGE 154 0.3
4 1mtk . 8 170 OXYGEN STORAGE 154 0.1
5 1mti . 8 170 OXYGEN STORAGE 154 0.2
6 1mls . 8 170 OXYGEN STORAGE 154 0.3
7 1mlr . 8 170 OXYGEN STORAGE 154 0.2
...

...
...

...
...

...
...

604 1f5p E 7 8 OXYGEN STORAGE/TRANSPORT 128 2.7
605 1lfl D 5 8 OXYGEN STORAGE/TRANSPORT 130 3.1
606 1gcw A 5 8 OXYGEN STORAGE/TRANSPORT 133 2.6

607 1ny9 A 5 8 TRANSCRIPTION 31 2.9
608 1aoi H 4 8 NUCLEOSOME CORE/DNA 49 2.9

609 1hbr A 6 7 OXYGEN STORAGE/TRANSPORT 130 2.9
610 1a0y C 6 7 OXYGEN TRANSPORT 126 3

aThe results are displayed as a list of proteins sorted according to the Score value with SSal the number of aligned SSEs, Score,
the similarity measure computed by DP, NA the number of atoms aligned, and the RMSD computed between corresponding atoms.

Table 2. Accuracy of the Results for Proteins 1tim Chain A, 110m, and 1rbpa

Triose phosphate Retinol binding
isomerase (1tim A) Myoglobin (110m) protein (1rbp)

Number Number Number
of items Accuracy of items Accuracy of items Accuracy

100 100.00% 100 100.00% 30 100.00%
200 100.00% 200 100.00% 50 93.88%
300 100.00% 300 100.00% 100 91.92%
400 100.00% 400 100.00% 150 81.76%
500 99.58% 500 100.00% 200 71.79%
600 99.29% 600 100.00% 250 63.27%
700 97.87% 700 94.89% 300 55.09%
800 96.01% 800 87.32%
900 92.19% 900 79.15%

1,000 88.88% 1,000 74.21%
1,100 85.00% 1,200 64.21%
1,200 80.42%
1,500 70.38%
2,000 59.24%

aA number in the first column of each table refers to the top considered items in the output list. The
accuracy is computed as the number of correctly classified proteins over the number of considered items.

protein belonging to the TIM barrel fold; ii) myoglobin (110m), an all-α protein fold; and iii) retinol
binding protein (1rbp), a representative of an all-β proteins. The results using each protein as a query
are summarized in Table 2. This table contains the percentage of correct results in the top n items of the
output, for various values of n. A result is considered correct or true positive if the protein reported as
similar is classified by SCOP in the same fold as the query protein.

Since the search is performed against all the PDB and not a selected subset, the number of significant
outputs is different in the three cases, reflecting the different number of homologues that populates the
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Table 3. Comparison of Structure Alignment for Some “Difficult” Cases
(See Shindyalov and Bourne, 1998) Obtained by PROuST, CE, DALI and VAST

PROuST CE DALI

Prot 1 Prot 2 Time Time Time VAST
(size) (size) na /rmsd (sec) na /rmsd (sec) na /rmsd (sec) na /rmsd

1clc (639) 1hoe (74) 61/3.1 0.6 66/3.1 10.5 66/3.4 24.4 45/2.5
3hla B (99) 2rhe (299) 71/3.1 0.4 85/3.5 1.3 75/3.0 15.8 58/2.3
2aza A (276) 1paz (120) 74/2.8 0.5 85/2.9 1.6 81/2.5 13.9 70/2.1
2sim (799) 1nsb A (466) 263/3.3 1.3 276/2.9 50.7 292/3.3 388.2 296/3.9
1tie (272) 4fgf (217) 101/3.1 0.4 115/2.8 2.3 114/3.1 29.7 76/1.6

database. In the case of 1tim, more than 400 chains are correctly recognized before a protein with a
different fold (according to the SCOP classification) is found. Besides, the top 120 polypeptide chains of
the list belong to triose phosphate isomerases from different sources or mutants, whilst position 121 is
occupied by a different protein sharing the same folding pattern (indole-3-glycerole phosphate synthase,
1j5t). From that position, enzymes that share a TIM barrel fold alternate with few other triose phosphate
isomerases. A similar situation holds for 110m, with all globins at the top 618 positions. In the case of
1rbp, since only a relatively limited number of chains with similar fold are present in PDB, the first false
positive that, according to SCOP, does not belong to the same fold is encountered at position 31. This
corresponds to the crystal structure of avidin, a β-barrel fold that presents an overall similarity with 1rbp.
All the other proteins that are considered incorrect in Table 2 represent other β-barrel folds (streptavidin-
like, or GFP, or immunoglobulin-like): they are considered to belong to other protein families, since their
topology is different from that of 1rbp. Nevertheless, a significant portion of their β-barrel superimposes
quite nicely with that of 1rbp. This demonstrates the flexibility of our method, which considers only spatial
relationships among secondary structural elements, neglecting the connections among them, and is able
to detect a partial similarity between two proteins of totally different size. We have done several other
tests on proteins of different classes and sizes and observed the same behavior; our results are typically
consistent with SCOP with few false positive intermixed with true positive at relatively high positions in
the output list.

Besides producing a list of similarities, the server can compute the best transformation matrix that
superimposes each pair of chains. It gives the RMSD among corresponding Cα atoms, and the coordinates
of the two superimposed proteins can be downloaded. A second set of experiments was done to compare
the results of our pairwise protein structure superposition with those obtained by the servers CE, DALI,
and VAST on pairs of proteins that are classified as “difficult cases” by Shindyalov et al. (1998). For the
selected pairs of proteins, Table 3 shows the number of aligned atoms and the corresponding RMSD with
each of the four methods, PROuST, CE, DALI, and VAST. The execution times of all four programs are
also shown in the last column. More details on how the execution times are obtained are given later.

In these tests (Table 3) PROuST behaves reasonably well and typically is much faster than other ap-
proaches. The RMSD between the pairs of models is, in general, comparable even if not identical.

4.1. Time performance

One of the main advantages of our method is that the comparison and alignment of the query protein
structure with the entire database can be performed on-line, since the time consuming step of the procedure,
i.e., the building of the hash table, is done off-line in a preprocessing stage. With the current size of the
PDB of more than 27,000 structures, the hash table construction would take a few days on a standard
computer. Thus, we have resorted to a distributed implementation on a grid computational infrastructure
(Ferrari et al., 2003); using four computational nodes of a grid, the overall computing time for the table
construction is approximately 28 hours.

Once the table has been built, searching the table for structures similar to a query protein is really
fast. The execution times of the search are generally in the range of seconds or a few minutes depending
on the query protein size. For instance, the total time required to comparing protein 110m, sperm whale
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myoglobin, consisting of eight helices, against the entire database is 18 seconds. (In fact, of the 18 seconds,
only 2.1 are used for searching, while the remaining are used for the grid initialization and authentication
phases.) For the larger protein 1tim chain A, containing 12 helices and 8 strands, the total time goes up to
four minutes.

The search results of the indexing method from a database of 23,000 proteins of the PDB are available
at the website www.angela.dei.unipd.it/PROuST. Note that a small percentage of all proteins from the
PDB could not be included in our database, because of inaccurate data due to discrepancies between PDB
secondary structure entries, the atomic coordinates, and the offset numbers of secondary structures.

The PROuST server provides also an alignment of the query protein with each of the proteins in the
output list. This step using DP and rigid body transformation is also performed on-line very efficiently,
since the execution time of the pairwise comparison is generally seconds or fractions of seconds (see
Table 3). The results of the alignment can be visualized with Rasmol or the superimposed coordinates
downloaded. At the present, the web page does not show the list of output proteins reranked according to
the results of the alignment. The development of the new website with this additional feature is underway.

A systematic comparison of the time performance of different servers for similarity retrieval is somewhat
difficult for several reasons. First of all, some servers use only a subset of representative proteins and not
the entire PDB. Furthermore, the results are often precomputed or provided by an e-mail in reply to a
submitted query. Even if the execution times were available, they would be have been achieved on different
computational platforms (supercomputers, clusters of PC, etc.). In the recent paper by Novotny et al. (2004)
the time performance of 11 servers is compared by using as measure the time elapsed between submission
of a query and receipt of the results. While this is certainly an important criterion, especially from a user’s
point of view, here we prefer to consider the actual execution times. Thus, we limit the analysis of the
time requirements to the pairwise comparison only, for which the computer programs can be downloaded
and run on the same computer.

The execution times of PROuST, CE, and DALI for the alignment and superposition of few pairs of
proteins are given in Table 3. They have been obtained by running PROuST, CE, and DALI on the same
standard PC. For PROuST, the execution time reported in the table is that of the DP algorithm followed
by the protein superposition procedure. Unlike the actual implementation of PROuST, the DP algorithm
in this experiment computes the score matrix from scratch without using the information already stored
in the hash table. In other words, it does not assume any preprocessing of the two proteins but creates a
temporary hash table where it inserts only the two proteins to be compared. The CE and DALI pairwise
comparison programs have been downloaded from their respective websites. Since the time execution
reported by DALI refers to the algorithm applied to all chains of the input proteins while the other two
programs consider only one chain per protein, the execution time of DALI is divided by the number of
chain comparisons under the assumption that the time is approximately the same on all pairs of chains.

From all our experiments, the time performance of pairwise comparison in PROuST is typically superior
to that of other programs, often by a large factor. Since our overall approach to similarity retrieval is
especially efficient in the first step of the indexing search, which allows to drastically reduce the number
of pairwise comparisons needed, it is reasonable to conclude our method performs extremely well in terms
of time complexity.

5. CONCLUSIONS

We have presented a fast and accurate method for protein structure comparison based on indexing and
dynamic programming. In our approach, a macromolecular complex is split into its component polypeptides,
and the search over the entire database is performed chain by chain. In such a way, similarities can be
found among quaternary structures that present a similar fold only in one subunit and not in the others.
Owing to the algorithm that takes into account triplets of secondary structure elements, partial similarities
can be found without imposing any a priori restriction in the size of the comparison, i.e., similarities
among domains or portions of the search model with domains or portions of models in the data base.
Moreover, only secondary structure elements, i.e., α-helices and β-strands, are considered, and loops or
other undefined strands are somewhat neglected and considered only in the final superposition step. Since
the latter are the parts of proteins that quite often present different conformations even among similar
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molecules, this improves the performances of the search. It must be noted that, since our server compares
a single molecule against the entire database, a very large number of obvious similarities can be found, in
particular for proteins that are largely represented in the PDB: for example, all the mutants and complexes
of the search protein, along with all the proteins of the same family. This disadvantage is compensated
by the fact that the choice of a structure representative of a given fold sometimes does not allow an
exhaustive comparison. For this reason, our server is particularly useful when the protein we are using
as a search model is a potential new fold or does not belong to a well known family. In this case, the
output will contain a limited number of significant entries and eventually allow the detection of relatively
distant similarities. Finally, the method presented here can be used to determine in a very efficient way
the superposition between two polypeptide chains in a stand-alone version. In fact, it does not require any
knowledge about the amino acid sequence similarity, since only secondary structure elements are considered
and aligned.
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